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matropic rearrangement of 3-indoleglycolic acid derivatives 
as the key step in a general scheme for the total synthesis of 
indole alkaloids; further investigations concerning the use of 
the [3,3] sigmatropic rearrangement for the regiospecific 
synthesis of other substituted arenes are also in progress. 
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Direct Observation of Radical Intermediates in the 
Photo-Kolbe Reaction—Heterogeneous Photocatalytic 
Radical Formation by Electron Spin Resonance 

Sir: 

Many electroinitiated chemical reactions are thought to 
proceed via radical intermediates. For example, the widely 
studied Kolbe reaction of carboxylates1 is believed to follow 
the mechanism 

RCO2- - ^ [RCO2-] — R- + CO2 (1) 

2R- -»• R-R (and/or disproportionation) (2) 
—e 

R *• R+ —• carbonium ion products (3) 

The mechanistic details of this electrooxidative decarboxyla­
tion are still a matter of controversy.2 Not only does the hy­
pothetical primary product of electron transfer, the acyloxy 
radical (RCO2-), rapidly split into CO2 and a hydrocarbon 
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Figure 1. ESR spectrum observed during illumination of a degassed sus­
pension of TiO2 powder in acetic acid containing 0.02 M a-phenyl-n-
tertbutylnitrone (PBN): the methyl radical adduct with PBN. 

radical, R-, but the secondary radical R- also has only a tran­
sient existence. In fact neither radical has been observed di­
rectly in electrochemical Kolbe reactions,3 although the iso­
lation of dimers, R-R, and the similarity of product distribu­
tions in preparative homogeneous radical initiated and elec-
troinitiated decarboxylations4 strongly point to the inter-
mediacy of R- as a transient free solution species. Our recent 
discovery of a heterogeneous, photoassisted decarboxylation 
of acetate ions to yield ethane at an illuminated TiO2 electrode, 
the "photo-Kolbe reaction",5 and the closely related studies 
of the photocatalytic decomposition of acetic acid solutions to 
form methane and CO2 on illuminated TiO2 powder6 provided 
a completely new type of oxidative decarboxylation reaction. 
We proposed that these reactions occurred via the formation 
of intermediate radicals and, to test this reaction sequence, 
sought direct confirmation by electron spin resonance (ESR) 
spectroscopy. We report here the first observation of radical 
intermediates (R-) in a Kolbe-type reaction by ESR. 

Two carboxylic acids, acetic and triphenylacetic acid, were 
decarboxylated via the photo-Kolbe reaction to yield a highly 
reactive methyl and a persistent triphenylmethyl radical, re­
spectively. While the former was detected using the spin 
trapping technique7-8 as an adduct with a nitrone (eq 4), the 
latter could be observed directly as a free radical. Experi-

CH3- + PhCH=XC(CH1), PhCH'(CH,)NC(CH:i), (4) 

mentally a flat quartz ESR cell which had a two-compartment 
side arm was used. Approximately 200 mg of photoplatinized 
TiO2

9 powder was placed in one compartment. The other 
compartment contained the reaction solution consisting of 0.02 
M a-phenyl-./V-rerr-butylnitrone (PBN) in glacial acetic acid. 
The cell was degassed several times and filled with prepurified 
helium (~600 Torr). First, only the reaction solution was 
poured from its compartment into the flat ESR cell, which was 
then inserted into the cavity of the ESR spectrometer (Varian 
E9). A (dark) background spectrum of this solution taken at 
the highest receiver gain showed no ESR spectrum. The sample 
was illuminated with a 400-W tungsten lamp. Two glass filters, 
(1) Oriel G-772-4750, 50%transmittance (T) at 500 nm and 
<1% T at 465 nm, and (2) Oriel G-772-3900, 50% T at 395 
nm and <1% T at 360 nm, were used in all experiments. In 
addition to the filters, the light was focused through the metal 
grid of the ESR cavity which passed ~40% of the light. Illu­
mination of the reaction solution through either filter 1 or 2 

Figure 2. ESR spectrum of triphenylmethyl radical produced by hetero­
geneous photocatalytic decarboxylation of tetra-H-butylammonium tri-
phenylacetate on TiO2 powder. 

produced no ESR spectrum. Next, the platinized TiO2 powder 
was mixed with the reaction solution and the mixture poured 
into the ESR cell. A (dark) background spectrum of this sus­
pension showed only a very broad structureless peak associated 
with the doped anatase powder (centered around g = 2.00 ± 
0.05, with a line width of 500 ± 25 G). When the scan range 
was reduced to 100 G, this background signal was relatively 
flat. Illumination of the sample using filter 1 gave no ESR 
spectrum. Upon illuminating using filter 2, however, the typical 
six-line spectrum of a nitroxide radical (3) appeared slowly and 
reached a photostationary intensity after several minutes. The 
signal decayed slowly when the illumination was turned off. 
The spectrum (Figure 1) shows coupling constants, «N = 15.85 
± 0.1 G and aH = 4.75 ±0.1 G, which are slightly larger 
(~8%) than those reported for 3 in benzene (ON = 14.79 G and 
^H = 3.73 G).10 The slightly larger values are consistent with 
the known dependence of N and /3-H coupling constants on 
solvent and can be attributed to the effect of hydrogen bonding 
in HOAc on the spin density in nitroxide radicals.11 Illumi­
nation of only PBN in benzene under the same experimental 
conditions gave no ESR spectrum. The reported photochemical 
oxidation of PBN by ultraviolet irradiation12-13 does not appear 
to occur under our experimental conditions. Thus the previ­
ously postulated intermediacy of methyl radicals5-6 in the 
photo-Kolbe reaction of acetate appears established.14 

In another series of similar experiments, the reaction solu­
tion consisted of a saturated solution of triphenylacetic acid 
and tetra-n-butylammonium triphenylacetate (TBATPA)15 

(1:1, total ~3 M) in acetonitrile (ACN). No ESR spectrum 
was observed for the reaction in the dark or upon illumination 
with the 400-W tungsten lamp using filters 1 or 2 in the ab­
sence of the TiO2. Again a suspension of platinized TiO2 
powder in this reaction solution showed only the previously 
described broad structureless background signal in the dark.16 

Upon illumination with the 400-W tungsten lamp and filter 
1, no ESR spectrum was observed. Illumination of the sample 
using filter 2 resulted in a signal that could be assigned to the 
triphenylmethyl radical, PhjC-. After ~30 min the spectrum 
was relatively stationary in intensity and clearly discernible 
(Figure 2). This spectrum closely matches that reported for 
Ph3C- in benzene17 and is practically undistinguishable from 
the spectrum of this radical obtained previously in this labo­
ratory31' by a two-step (oxidation + reduction) electrolysis of 
triphenylacetic acid in ACN. When a saturated solution of 
triphenylacetic acid and TBATPA in acetonitrile containing 
0.02 M PBN was illuminated with a 450-W xenon lamp, a 
weak set of signals appeared, apparently consisting of the su­
perposition of two spectra, probably a nitroxide radical and the 
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triphenylmethyl radical. Only a short illumination (10 min at 
<50 0C) with a more powerful light source, a 2500-W xenon 
lamp (operated at 1600-W), filtered through Pyrex, brought 
about a dramatic intensification of the signals. Again signals 
from two species were found; one (of stationary intensity) could 
be assigned to Ph3C-, while the other (which decayed in the 
dark at room temperature) showed the typical six-line pattern 
of a spin adduct on the nitrone (PBN).18 Irradiation of a 
sample that did not contain TiO2 and PBN using both the 2500 
and 450-W xenon lamps produced no ESR spectrum. The 
photo- and thermal decomposition of triphenylacetate19-21 does 
not occur under the given experimental conditions. 

These experimental results clearly establish the existence 
of methyl and triphenylmethyl radicals as heterogeneously (on 
Ti02) photogenerated radical intermediates in the photo-Kolbe 
reaction. As expected,5-6 there is a close mechanistic parallel 
between the oxidation step in the photo- and electrochemi-
cal-Kolbe reactions. However, the generally high current 
densities and oxidation potentials in the latter reactions, as well 
as the possible strong adsorption of the radicals on the solid 
electrodes, have not allowed their detection by ESR up until 
now.3 On the other hand, the low surface density of the pho­
togenerated radicals on the Ti02 powder, together with the 
unimportance of follow-up oxidations in these reactions (be­
cause two-hole oxidations are improbable), permits the de­
tection of the intermediate radicals here. Since many pho-
toinduced oxidation reactions are known on n-type semicon­
ductor materials, such as n-Ti02, the study by ESR of photo-
generated intermediate radicals on partially platinized semi­
conductor powders should provide a useful tool in the investi­
gation of photoredox processes on these materials.22-23 

Moreover, heterogeneous photocatalysis could provide a 
generally useful method for generating reactive radicals for 
study by ESR.24 
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Fe + Induced Dehydrohalogenation and Polymerization 
of Phenyl Halides in the Gas Phase 

Sir: 

In the gas phase atomic transition metal ions react with a 
number of alkyl halides by insertion into the carbon-halogen 
bond.1-2 If the alkyl group has /3-hydrogen atoms, the metal 
insertion complex loses HX to form a metal ion-olefin com­
plex. In the case of methyl halides, however, M + reacts to form 
M C H 3

+ and MX+ .1 '2 It might be expected that aryl halides 
would react as the methyl halides do since elimination of HX 
from an aryl halide is a very high energy process. We wish to 
report, however, the following reaction between Fe+ and 
chlorobenzene: 

Fe+ + C6H5Cl — FeC6H4
+ + HCl (D 

The Fe+ is formed by electron impact on Fe(CO)5 and the 
reactions observed at low pressures ( ~ 1 0 - 6 Torr) in an ion 
cyclotron resonance spectrometer.3 Double-resonance tech­
niques establish3 that reaction 1 is a bimolecular process be­
tween the indicated reactants. The mass of the product of the 
analogous reaction of C6D5Cl verified the hydrogen content 
of the product. The rate constants for the reaction are within 
an order of magnitude of the reactant collision frequencies 
( ~ 1 0 - 9 cm3 molecule -1 s - 1 ) . Furthermore, the following re­
actions succeed reaction 1. 

Fe(C6H4)+ + C6H5Cl -» Fe(C12H8)+ + HCl (2) 

Fe(C12H8)+ + C6H5Cl - Fe(C18H12)+ + HCl (3) 

Reactions of fluorobenzene and bromobenzene are analo­
gous to reaction 1. Iodobenzene, however, reacts according 
to 

Fe+ + C6H5I — 
'•* FeC6H5

+ + I (4) 

15% 
* FeI+ + C6H5 (5) 

The products of reactions 4 and 5 are most readily rationalized 
in terms of a metal insertion followed by cleavage of either the 
metal-carbon bond or metal-iodine atom bond. The possibility 
that metal insertion plays a role in the mechanism of reaction 
1 is suggested by the following series of reactions: 

FeCO+ + C6H5Cl — FeC6H5Cl+ + CO (6) 

FeC6H5
35Cl + C6H5

37Cl — FeC6H5
3 7ClC6H5 + 35Cl (7) 

Double resonance establishes that the indicated isotopic var­
iants of the reactants of reaction 7 give only the indicated 
isotopic variants of the products. If the product of reaction 6 
is envisioned as C 6 H 5 -Fe-Cl + , then elimination of a Cl atom 
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